The Crystal and Molecular Structure of Cholest-4-en-3-one

By George M. Sheldrick
University Chemical Laboratory, Lensfield Road, Cambridge, England
Ernst Oeser
Technische Hochschule, 61-Darmstadt, Petersenstrasse 15, Germany (BRD)
and Mino R.Caira, Luigi R. Nassimbeni and Richard A. Pauptit
Department of Physical Chemistry, University of Cape Town, South Africa

(Received 16 December 1975; accepted 19 January 1976)

Abstract

The title steroid is monoclinic with $a=14.634$ (5), $b=7.862$ (5), $c=10.674$ (5) $\AA, \beta=105 \cdot 1$ (2) ${ }^{\circ}, Z=2$, space group $P 2_{1}$. The structure was determined by a new multisolution tangent refinement program incorporating a negative quartet test, and refined by full-matrix least squares to a final R of 0.049 for 1292 independent reflexions measured on a four-circle diffractometer. Rings B, C and D are transfused and the side chain is in the extended configuration.

Introduction

Cholest-4-en-3-one is an important synthetic intermediate in many steroid transformations. It has been shown to be involved in the metabolic pathways from cholesterol to 5α-cholest-7-en- 3β-ol and 5β-cholestanol (Banthorpe \& Charlwood, 1974) but does not itself exhibit important biological properties. The 4 -en-3-one moiety is, however, a feature of many steroid hormones (Fieser \& Fieser, 1959).

Experimental

The compound (m.p. $80-81^{\circ}$) was prepared by the Oppenauer oxidation of cholesterol and was recrysstallized from methanol. Microanalysis yielded the following results:

	$\% \mathrm{C}$	$\% \mathrm{H}$
Found	$84 \cdot 20$	$11 \cdot 40$
Calculated for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}$	$84 \cdot 38$	$11 \cdot 45$.

The crystals were colourless needles elongated along b. From oscillation and Weissenberg photographs ($\mathrm{Cu} K \alpha$ radiation, $\lambda=1 \cdot 542 \AA$), the space group $P 2_{1}$ was indicated by the systematic absences $0 k 0, k=$ $2 n+1$. The density was measured in aqueous sodium chloride solution. Crystal data are listed in Table 1.

Table 1. Crystal data

Molecular formula: $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}$	
M.W. $384 \cdot 3$	
Space group: $P 2_{1}$	
$a=14.634(5) \AA$	$D_{m}=1.08 \mathrm{~g} \mathrm{~cm}^{-3}$
$b=7.862(5)$	$D_{c}=1.08$ for $^{-1} Z=2$
$c=10 \cdot 674(5)$	$\mu=0.32 \mathrm{~cm}^{-1}$
$\beta=105 \cdot 1(2)$	$F(000)=428$
$V=1185 \cdot 74 \AA^{\circ}$	

The cell parameters were obtained by a least-squares analysis of the settings of 25 reflexions measured on a Phillips PW 1100 four-circle diffractometer with Mo K α radiation ($\lambda=0.7107 \AA$, graphite-monochromated) and a crystal $0.3 \times 0.4 \times 0.15 \mathrm{~mm}$. The intensities of 1583 reflexions in the range $3^{\circ}<\theta<22^{\circ}$ were recorded by the $\omega-2 \theta$ scan technique (scan width $1 \cdot 2^{\circ} \theta$, scan speed $\left.0.04^{\circ} \theta \mathrm{s}^{-1}\right)$. The background was counted on both sides of the peak for one half of the peak scan time. The intensities of three standard reflexions measured every hour remained constant to within 2% of their mean values. Lorentz-polarization corrections were applied. No absorption correction was made. 1292 reflexions, considered observed when $F>1 \cdot 650 \sigma(F)$, were used in the analysis.

Solution and refinement

The structure was solved by a new multisolution tangent refinement program written for the NOVA and ECLIPSE minicomputer with 32 k 16-bit word core storage (Sheldrick, 1976). Previous attempts with MULTAN and SHELX on a Univac 1106 computer failed. 128 permutations were generated by means of the starting set shown in Table 2.

Table 2. Reflexions used in the starting set with allowed phases

h	k	l	E	$\varphi\left({ }^{\circ}\right)$
2	0	1	$3 \cdot 178$	0
-15	0	4	$3 \cdot 840$	0
1	1	1	$3 \cdot 038$	0
-9	3	5	$3 \cdot 628$	45,135
0	0	7	$3 \cdot 690$	0,180
2	0	2	$3 \cdot 703$	0,180
-10	3	5	$2 \cdot 560$	$45,135,225,315$
0	7	1	$2 \cdot 089$	$45,135,225,315$

After the phases of the 126 largest E values ($E>$ 1.615) had been found, a negative quartet test (De Titta, Edmonds, Langs \& Hauptman, 1975) and $R(\alpha)$ test (Roberts, Petterson, Sheldrick, Isaacs \& Kennard, 1973) were applied. The 'best' phase sets were then expanded to 320 reflexions with $E>1 \cdot 200$. The phase set ranked second by both tests produced the most easily interpreted E map; of the top 31 peaks 26 corresponded to correct atomic positions. Three atoms were missing, but two of these could be found by reflexion of spurious peaks in a pseudo-mirror plane at $y \simeq 0 \cdot 30$. The time for the direct methods job, including computation of E maps, was 20 min on ECLIPSE.

Two cycles of least-squares refinement including all non-hydrogen atoms (isotropic) yielded $R=0 \cdot 139$. At this stage, several of the H atoms were located in a difference map. Theoretical positions of all the H atoms were calculated and the latter were included in constrained refinement with $\mathrm{C}-\mathrm{H} 1.08 \AA$ and with one common isotropic temperature factor assigned to each H atom type $\left(-\mathrm{CH}_{2}-\right.$ and $\mathrm{CH}_{3}-$; the methine H was assigned the same U as that of the former). These temperature factors were allowed to vary during the subsequent four cycles in which the heavy atoms were refined anisotropically. The average shift:error ratio was 0.01 and a final difference map revealed no peaks of height $>0.05 \mathrm{e}^{-3}$. The final R was 0.049 and R_{w} was 0.045 with $w=1 / \sigma^{2}$. An analysis of variance indicated that the latter weighting scheme was satisfactory.* An attempt to establish the absolute configuration with Hamilton's (1965) criterion failed. Scattering factors were those of Cromer \& Mann (1968). Tables 3, 4 and 5 list the final atomic coordinates and temperature factors. The isotropic temperature factors of the H atoms refined to $U=0.079$ (methylene) and $U=0.107 \AA^{2}$ (methyl).

* A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31620 (9 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1 NZ, England.

Fig. 1. View of the molecule.

Description of the structure and discussion

Bond lengths and angles are listed in Tables 6 and 7 respectively. Fig. 1 is a perspective view of the mole-

Table 3. Fractional atomic coordinates ($\times 10^{4}$) and their e.s.d.'s for the heavy atoms

	x	y	z
$\mathrm{O}(3)$	-1776 (3)	2939 (12)	9007 (5)
C(1)	132 (5)	4798 (11)	7868 (6)
C(2)	-501 (5)	4676 (13)	8806 (7)
C(3)	-1055 (4)	3065 (14)	8646 (6)
C(4)	-664 (4)	1600 (13)	8117 (5)
C(5)	181 (4)	1597 (10)	7830 (5)
C(6)	604 (4)	-26 (11)	7503 (6)
C(7)	989 (4)	166 (11)	6305 (5)
C(8)	1664 (4)	1653 (10)	6424 (5)
C(9)	1144 (3)	3289	6640 (5)
$\mathrm{C}(10)$	763 (3)	3224 (11)	7871 (5)
C(11)	1727 (4)	4886 (10)	6594 (5)
C(12)	2116 (4)	4999 (11)	5388 (5)
C(13)	2679 (3)	3398 (10)	5247 (4)
C(14)	2022 (4)	1881 (10)	5216 (5)
C(15)	2542 (4)	389 (11)	4790 (6)
$\mathrm{C}(16)$	3056 (4)	1193 (11)	3846 (6)
C(17)	2939 (3)	3165 (11)	3944 (5)
C(18)	3587 (3)	3297 (12)	6393 (4)
C(19)	1569 (4)	3195 (14)	9153 (5)
C(20)	3789 (4)	4142 (11)	3688 (5)
C(21)	3734 (5)	6062 (12)	3862 (7)
C(22)	3891 (3)	3754 (12)	2306 (5)
C (23)	4885 (3)	4025 (12)	2151 (5)
C(24)	4963 (3)	3763 (11)	779 (4)
C (25)	5936 (3)	4093 (11)	563 (5)
C(26)	6687 (4)	2920 (12)	1367 (6)
C(27)	5891 (4)	3936 (13)	-878 (5)

Table 4. Anisotropic temperature fuctors of the heavy atoms $\left(\AA^{2} \times 10^{3}\right)$

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\mathrm{O}(3)$	$92(3)$	$164(6)$	$173(5)$	$-25(5)$	$83(3)$	$-4(4)$
$\mathrm{C}(1)$	$93(5)$	$75(5)$	$85(5)$	$0(4)$	$45(4)$	$11(4)$
$\mathrm{C}(2)$	$99(5)$	$113(7)$	$89(5)$	$-24(5)$	$45(4)$	$-8(5)$
$\mathrm{C}(3)$	$73(4)$	$124(7)$	$74(4)$	$-5(5)$	$29(4)$	$12(6)$
$\mathrm{C}(4)$	$54(4)$	$107(6)$	$65(4)$	$-4(4)$	$12(3)$	$-14(4)$
$\mathrm{C}(5)$	$63(4)$	$73(5)$	$48(3)$	$3(3)$	$17(3)$	$-3(4)$
$\mathrm{C}(6)$	$73(4)$	$61(4)$	$88(4)$	$-2(4)$	$28(3)$	$-16(4)$
$\mathrm{C}(7)$	$82(4)$	$52(4)$	$85(4)$	$0(4)$	$41(3)$	$-5(4)$
$\mathrm{C}(8)$	$55(3)$	$37(4)$	$65(4)$	$4(3)$	$14(3)$	$1(3)$
$\mathrm{C}(9)$	$55(3)$	$52(4)$	$55(3)$	$-1(3)$	$16(3)$	$-3(4)$
$\mathrm{C}(10)$	$59(3)$	$65(4)$	$55(3)$	$-3(4)$	$14(3)$	$-6(4)$
$\mathrm{C}(11)$	$68(4)$	$47(4)$	$67(4)$	$-7(3)$	$31(3)$	$-2(4)$
$\mathrm{C}(12)$	$61(4)$	$45(4)$	$69(4)$	$0(3)$	$21(3)$	$-3(3)$
$\mathrm{C}(13)$	$47(3)$	$48(4)$	$54(3)$	$3(3)$	$11(3)$	$0(3)$
$\mathrm{C}(14)$	$54(3)$	$42(4)$	$59(4)$	$3(3)$	$21(3)$	$0(3)$
$\mathrm{C}(15)$	$78(4)$	$46(4)$	$84(4)$	$-7(3)$	$31(3)$	$-2(3)$
$\mathrm{C}(16)$	$75(4)$	$63(4)$	$81(4)$	$-8(4)$	$36(4)$	$-1(4)$
$\mathrm{C}(17)$	$57(3)$	$55(4)$	$56(3)$	$-3(3)$	$16(3)$	$5(3)$
$\mathrm{C}(18)$	$56(3)$	$83(4)$	$58(3)$	$5(4)$	$7(2)$	$-6(4)$
$\mathrm{C}(19)$	$79(4)$	$114(6)$	$59(3)$	$-4(4)$	$15(3)$	$-26(5)$
$\mathrm{C}(20)$	$50(3)$	$62(4)$	$69(4)$	$-6(3)$	$19(3)$	$-8(3)$
$\mathrm{C}(21)$	$84(4)$	$69(5)$	$91(5)$	$-5(4)$	$40(4)$	$-10(4)$
$\mathrm{C}(22)$	$64(3)$	$78(5)$	$62(3)$	$-7(4)$	$26(3)$	$-7(3)$
$\mathrm{C}(23)$	$56(3)$	$74(4)$	$73(4)$	$-6(4)$	$20(3)$	$-5(3)$
$\mathrm{C}(24)$	$70(3)$	$55(4)$	$58(3)$	$-5(3)$	$24(3)$	$-1(3)$
$\mathrm{C}(25)$	$60(3)$	$60(4)$	$66(4)$	$2(3)$	$22(3)$	$-1(3)$
$\mathrm{C}(26)$	$65(4)$	$94(6)$	$88(4)$	$16(4)$	$13(3)$	$15(4)$
$\mathrm{C}(27)$	$85(4)$	$91(5)$	$68(4)$	$7(4)$	$32(3)$	$9(4)$

cule with the configuration specified by the tabulated atomic coordinates. Rings B, C and D are trans-fused. Torsion angles are listed in Table 8. The side chain is

Table 5. Fractional atomic coordinates $\left(\times 10^{3}\right)$ of the hydrogen atoms

	x	y	z
$\mathrm{H}(11)$	-32	497	690
$\mathrm{H}(12)$	59	589	813
$\mathrm{H}(21)$	-99	573	863
$\mathrm{H}(22)$	-6	474	979
$\mathrm{H}(4)$	-108	45	794
$\mathrm{H}(61)$	118	-40	832
$\mathrm{H}(62)$	7	-100	731
$\mathrm{H}(71)$	40	36	546
$\mathrm{H}(72)$	136	-99	618
$\mathrm{H}(8)$	227	140	723
$\mathrm{H}(9)$	53	336	583
$\mathrm{H}(111)$	128	598	660
$\mathrm{H}(112)$	232	491	745
$\mathrm{H}(121)$	258	609	548
$\mathrm{H}(122)$	153	514	454
$\mathrm{H}(14)$	134	205	454
$\mathrm{H}(151)$	304	-17	561
$\mathrm{H}(152)$	205	-57	431
$\mathrm{H}(161)$	380	85	412
$\mathrm{H}(162)$	274	77	287
$\mathrm{H}(17)$	238	375	320
$\mathrm{H}(181)$	396	218	622
$\mathrm{H}(182)$	339	315	730
$\mathrm{H}(183)$	404	440	645
$\mathrm{H}(191)$	200	432	917
$\mathrm{H}(192)$	201	208	927
$\mathrm{H}(193)$	123	326	993
$\mathrm{H}(20)$	441	369	441
$\mathrm{H}(211)$	376	639	486
$\mathrm{H}(212)$	309	655	323
$\mathrm{H}(213)$	433	662	360
$\mathrm{H}(221)$	341	458	163
$\mathrm{H}(222)$	370	244	208
$\mathrm{H}(231)$	536	314	278
$\mathrm{H}(232)$	510	531	244
$\mathrm{H}(241)$	477	246	51
$\mathrm{H}(242)$	446	461	15
$\mathrm{H}(25)$	614	537	88
$\mathrm{H}(261)$	675	310	239
$\mathrm{H}(262)$	735	322	117
$\mathrm{H}(263)$	651	161	111
$\mathrm{H}(271)$	657	428	-102
$\mathrm{H}(272)$	535	477	-145
$\mathrm{H}(273)$	573	264	-118

Table 6. Bond lengths (\AA) and their e.s.d.'s

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.532(6)$	$\mathrm{C}(14)-\mathrm{C}(8)$	$1.523(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.490(7)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.531(6)$
$\mathrm{C}(3)-\mathrm{O}(3)$	$1.218(5)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.542(6)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.463(7)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.566(6)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.349(6)$	$\mathrm{C}(17)-\mathrm{C}(13)$	$1.546(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.499(6)$	$\mathrm{C}(10)-\mathrm{C}(19)$	$1.557(5)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.533(6)$	$\mathrm{C}(13)-\mathrm{C}(18)$	$1.556(5)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.515(6)$	$\mathrm{C}(17)-\mathrm{C}(20)$	$1.546(5)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.542(5)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.526(6)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.556(5)$	$\mathrm{C}(20)-\mathrm{C}(22)$	$1.551(5)$
$\mathrm{C}(10)-\mathrm{C}(1)$	$1.544(6)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.521(5)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.531(6)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.512(5)$
$\mathrm{C}(9)-\mathrm{C}(11)$	$1.526(6)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$1.523(5)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.540(6)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.518(5)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.533(6)$	$\mathrm{C}(25)-\mathrm{C}(27)$	$1.527(5)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.528(6)$		

Table 7. Bond angles (${ }^{\circ}$) and their e.s.d.'s

$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)$	114.3 (4)	C	
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	112.4 (5)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$117 \cdot 2$ (4)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(17)$	3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	$121 \cdot 6$ (6)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	
C(3)-O(3)	$121 \cdot 0$ (6)	$\mathrm{C}(17)-\mathrm{C}(13)-\mathrm{C}(18)$	
C(4)-C(5)	$124 \cdot 2$ (5)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	(4)
C(5)-C(10)	121.9 (5)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(17)$	(3)
C(5)-C(6)	$120 \cdot 8$ (5)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(8)$	$115 \cdot 3$ (4)
$\mathrm{C}(5)-\mathrm{C}(6)$	117.2 (4)	C(8)-C(14)-C(15)	117.9 (4)
$\mathrm{C}(6)-\mathrm{C}(7)$	112.0 (4)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$104 \cdot 2$ (3)
$\mathrm{C}(7)-\mathrm{C}(8)$	112.3 (4)	14)-C(15)-C(16)	$104 \cdot 2$ (4)
$\mathrm{C}(8)-\mathrm{C}(9)$	$108 \cdot 7$ (3)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$106 \cdot 4$ (4)
(8)-C(9)-C(10)	$113 \cdot 5$ (4)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(13)$	$103 \cdot 6$ (4)
C(10)-C(5)	108.8 (4)	$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(20)$	119.9 (3)
5)-C(10)-C(1)	$110 \cdot 0$ (3)	16)-C(17)-C(20)	111.9 (3)
(1)-C(10)-C(19)	$109 \cdot 2$ (4)	$\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{C}(21)$	$113 \cdot 5$ (4)
(1)-C(10)-C(9)	$108 \cdot 6$ (4)	$\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{C}(22)$	$110 \cdot 6$ (3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	112.7 (3)	(21)-C(20)-C(22)	$109 \cdot 4$ (4)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(19)$	$107 \cdot 5$ (4)	$\mathrm{C}(20)-\mathrm{C}(22)-\mathrm{C}(23)$	114.0 (3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(14)$	112.3 (3)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	113.7 (3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(14)$	$108 \cdot 6$ (3)	(23)-C(24)-C(25)	115.6 (3)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(11)$	112.4 (4)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$112 \cdot 3$ (4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)$	112.3 (3)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(27)$	110.0 (3)
(9)-C(11)-C(12)	114.0 (4)	C(26)-C(25)-C(27)	$110 \cdot 8$ (4)

Table 8. Torsion angles (${ }^{\circ}$)
Ring A

$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(5)$	$45 \cdot 5$
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-51 \cdot 0$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$25 \cdot 7$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$3 \cdot 5$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	$-8 \cdot 1$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(1)$	$-16 \cdot 6$

Ring B

$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	$46 \cdot 7$
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-48 \cdot 0$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$52 \cdot 8$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-57 \cdot 9$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$58 \cdot 8$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	$-51 \cdot 8$
$\mathrm{Ring} C$	
$\mathrm{C}(14)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)$	$-50 \cdot 0$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)$	$50 \cdot 7$
$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$-54 \cdot 1$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$55 \cdot 9$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(8)$	$-60 \cdot 7$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(13)$	$57 \cdot 7$
$\mathrm{Ring} D$	
$\mathrm{C}(17)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$45 \cdot 9$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$-34 \cdot 1$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$8 \cdot 9$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(13)$	$18 \cdot 9$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(16)$	$-39 \cdot 2$

in an extended configuration. There are no significant short intermolecular contacts.

We thank the University of Cape Town for research grants and the CSIR (Pretoria) for data collected on the diffractometer. The crystals were kindly provided by Dr G. L. Cragg.

References

Banthorpe, D. V. \& Charlwood, B. V. (1974). Specialist Periodical Reports, Terpenoids and Steroids, Vol 4, pp. 250-300. London: The Chemical Society.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.

De Titta, G. T., Edmonds, J. W., Langs, D. A. \& Hauptman, H. (1975). Acta Cryst. A31, 472-479.
Fieser, L. F. \& Fieser, M. (1959). Steroids, Chaps. 17 and 19. New York: Reinhold.

Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Roberts, P. J., Petterson, R. C., Sheldrick, G. M., Isaacs, N. W. \& Kennard, O. (1973). J. Chem. Soc. Perkin II, pp. 1978-1983.
Sheldrick, G. M. (1976). To be published.

Structural Investigations of Ylides. VIII.* Crystal and Molecular Structure of a First-Row Sulphonyl-Stabilized Ylide: N-(Trimethylammonio)toluene- \boldsymbol{p}-sulphonamidate

By A. Forbes Cameron, Fergus D. Duncanson and David G. Morris
Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland

(Received 3 December 1975; accepted 5 January 1976)

Abstract

The structure of the title compound has been determined from 2116 independent data collected on a diffractometer. The crystals are monoclinic, space group $P 2_{1} / c$, with $Z=4, a=6 \cdot 128, b=7 \cdot 161, c=$ $28.142 \AA, \beta=93.66^{\circ}$. The structure was solved by direct methods, and refined by least squares to a final R of 0.007 . The conformation is very similar to that of several other ylides containing the iminesulphonyl grouping, despite the presence of water of crystallization, the latter molecules being hydrogenbonded both to the imino-nitrogen atom and to one of the sulphonyl-oxygen atoms of the ylide molecules. The $\stackrel{+}{\mathrm{N}}-\stackrel{-}{\mathrm{N}}$ and $\stackrel{-}{\mathrm{N}}-\mathrm{SO}_{2}$ lengths are respectively 1.472 (2) and 1.592 (2) \AA, while the $\stackrel{+}{\mathrm{N}}-\stackrel{\mathrm{N}}{\mathrm{N}}-\mathrm{S}$ valence angle is $118.0(1)^{\circ}$.

Introduction

Previous examples of ylides containing the iminesulphonyl grouping, such as (II) (Cameron, Hair \& Morris, 1973), (III) (Cameron, Hair \& Morris, 1974) and similarmolecules(Kálmán, 1967; Kálmán, Duffin \& Kucsman, 1971; Kálmán \& Sasvári, 1972), are all characterized by the presence of second row 'onium species which possess d-orbitals of energies such that delocalization is possible between the 'onium and imi-no-nitrogen atoms. It is plausible that such delocalization could compete with delocalization between the imino and sulphonyl species. However, in the ammonium imines (IV) and (V) (Cameron, Hair \& Morris, 1972), delocalization of the formal negative charge on the imino-nitrogen may take place only via the stabilizing groups, and it has been shown that for these two compounds, the $\stackrel{+}{\mathrm{N}}-\stackrel{-}{\mathrm{N}}$ lengths are identical, no differences having been induced by the two considerably different stabilizing groups.

[^0](1)

(II)

(III)

(IV)

(v) $\mathrm{Me}_{3} \stackrel{+}{\mathrm{N}}-\overline{\mathrm{N}}-\mathrm{NO}_{2}$

In order to study the geometry of the imine-sulphonyl grouping in the absence of possible and competing

[^0]: * Part VII: Cameron, Cameron, Campbell, \& Johnson (1976).

